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Abstract 

Symmetry operators (airs)  of a space group G and 
(ill z./3) of a subgroup g are conjugated with respect to a 
similarity operator S = (SIT) where S is a 3 x 3 matrix 
and T a column matrix. The matrix S relates the lattice 
vectors of G to those of g whilst T describes the origin 
of the lattice of g in the coordinate system of G. We 
determine here the coefficients of the matrix S when G 
and g are equivalent, i.e. isosymbolic or enantio- 
morphic. Here the index ofg  in G is equal to Idet Sl. Its 
lowest values are tabulated for all space groups. 

1. Introduction and outline 

One of the authors (Billiet, 1973) has shown that each 
space group G referred to a unit cell A, B, C and an 
origin O has an infinity of subgroups g having the same 
Hermann-Mauguin space group symbol, but an 
increased unit cell a, b, c at the origin o. Such sub- 
groups g with the same symbol as G were called 'iso- 
symbolic', a, b, c and A, B, C are related by the 
equation 

(a,b,c) = (A,B,C)S. (1) 

Here (a,b,e) and (A,B,C) are row matrices and S is a 
3 x 3 matrix; its coefficients sij are integers.* The 
coefficients of the matrix S as well as the coordinates of 
the origin o were found by a direct mapping procedure 
of the coordinate triplets of the Wyckoff families of g 
onto G as described in the reference above. We choose 
here an analytical procedure which relates S to the 
specific symmetry operations by an important con- 
jugation relation. 

The determinant of S is abbreviated det S; its 
modulus is equal to the index of g in G and represents 
the volume ratio of abc and ABC. In previous work 
(Billiet, 1973) it was restricted to positive values which 
means that the 'handedness' of G was conserved in g. 

* The coefficients stj are always integer numbers when g is an 
equivalent subgroup of G. 
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We consider here the general case where det S may be 
positive as well as negative. It is well known that a 
screw axis 31 is changed into a 32 axis by a change of 
handedness. Thus we consider not only the iso- 
symbolic, but also the enantiomorphic groups. This is 
the reason why we have chosen the title of equivalent 
subgroups for those subgroups g which are either iso- 
symbolic or enantiomorphic with G. 

2. The conjugation relation 

The proof given here is valid for the most general form 
of S, for sij integral or not, also when g is a non- 
equivalent subgroup of G,* say. R(X,Y ,Z)  and r(x,y,z) 
are column matrices in G and g respectively, described 
by the conventional crystallographic coordinates. If T 
is the column matrix X o, Yo, Zo which describes the 
origin o of the reference system (o,a,b,e) of g in the 
coordinate system of G, one has 

R -- T + Sr. (2) 

If (ctl r )  is a symmetry operator in G, one has 

R ' =  (alL~)R----aR + r,~. (3) 

Similarly, if (fllr/~) is the homologous~ symmetry 
operator in g, one has (see Fig. 1) 

r ' =  (fllr/3)r = fir + r/3. (4) 

Between R' and r' one has the relation 
R' ---- T + Sr'. (5) 

In (3), replacing R' and R by their expressions given 
in (5) and (2), respectively, one has 

Sr' = aSr + [a--  (I)]T + z,~. (6) 
Multiplying (4) by S and identifying with (6) we 

obtain the important relation between operators 

(SIT) (fllz/3) = (air,,) (SIT), (C) 

* See previous footnote. 
t Two symmetry operators ( a i r )  and (flirt) are homologous if 

they represent the same operation in space, but  are expressed in the 
(different) coordinate systems of G and g, (O,A,B,C) and (o,a,b,e), 
respectively. 

© 1979 International Union of Crystallography 
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which, separating the rotational and translational parts, 
splits into 

S f l = a S ,  (7) 

sr~  = r~ + [ - -  (1)IT. (8) 

Here (1) is the unit matrix. We rewrite the last 
equation in the following more convenient form, 
restricting ~'~ to be less than a lattice translation t 6 in G 
by the usual convention r = ~- + t, 

S t t~ -  ~-,~ + [(1) - a l T  = t 6. (8a) 

Relations (7) and (8a) determine the matrix S and 
the vector T, say the unit cell in g, its magnitude and 
position. 

Remark 

The basic relation above has been called (C) to recall 
that it expresses a conjugation: the operators a = (61 r~) 
of G and b = (fllrt~) o f g  are conjugated with respect to 
the similarity operator 

S = (SIT), 

b = S -1 aS. ( C ' )  

Also, (C) is more general than stated here and applies 
to any group-subgroup relation. Similarities include 
symmetries as special cases and we shall discuss in 
another paper the group of similarity operators. Note 
that our definition of equivalent subgroups implies 
Idet SI > 1, thus including the case Idet SI = 1 which 
corresponds to the automorphisms of G. 

We shall first discuss two special cases, those of pure 
lattice translations and of symmorphic space groups. 

2.1. Pure translations 

The operators (ctlr~) and ( f l i t )  can be represented 
by (1 I t6) and (1 I tg) respectivel~ and relation (C) 

reduces to 
Stg = to. (8b) 

The case of centred lattices (8b) introduces parity 
rules for the coefficients s u of S as will be shown later. 

2.2. Symmorphic space groups and choice of  origin 

If G and g are symmorphic space groups, the 
operators of their generators (c~lr)  and ( f l i t )  can be 
chosen such that r ,  = r~ = 0 and (8a) simplifiers to 

[ ( l ) - - a ] T = t  6. (8c) 

This relation does not contain S and thus expresses a 
fundamental property of the symmetry operator 
(al000) in the group G. The solution of (8c) corres- 
ponds to the location T of the symmetry elements 
equivalent to a .  The solutions T i of (8c) for the 
generators (nil000) of G have an intersection which 
forms the set of possible origins of g. We give some 
examples when ct corresponds to i, 4, 4, 2 x and 3 in 
Appendix A. 

2.3. Remark 

If the origin is chosen on a screw axis or glide plane 
corresponding to the operator (al~,~)('~,~ :~ 0), the 
solution of (8c) still indicates the locations T of the 
equivalent symmetry elements. This suggests the 
following 'decoupling procedure'. If one finds con- 
sistent solutions 

S ~ p - ~ = t  6 and [ ( l ) - a l T = t ' 6 ,  (8d) 

then (8a) is certainly verified. We have applied this 
procedure in the discussion of I41/a (see § 4.4.1). This 
procedure is also allowed for T = 0, i.e. for the same 
choice of origins in G and g where (8d) reduces to 

S~'~ -  ~,~ = t 6. (8e) 

O o 

d b 
Fig. 1. Homologous symmetry operators. The left and right parts 

correspond to G and g respectively. If  a 1 = 2 x is the operator of 
a twofold rotation about OA, the homologous operator in g is 
/~ = 2xx [see equations (12)] in the example P422 of the text. In 
the same way, if a 2 = 2xx is the operator of  a twofold rotation 
about the diagonal OD, the homologous operator in g is f12 = 2 r  
The same figure provides the illustration for the 'class equivalent' 
space groups considered in Appendix B where cq = m x is the 
operation of a mirror perpendicular to OA and fl~ = mxx is that of 
a mirror perpendicular to the line od and transforming x,y,z to 

3. Form of  the matrix S 

3.1. Tetragonal, hexagonal, trigonal, rhombohedral 
and monoclinic groups 

We shall derive the form of S for tetragonal, 
hexagonal, trigonal, rhombohedral and monoclinic 
groups. The principal axis is taken along Oz with the 
same orientation in G and g. The matrix expressions of 
a and fl are then formally the same.* As a con- 
sequence (cf 7), a = fl commutes with S. 

* One may also study the case of fl = a - I  (opposite orientation), 
but it does not introduce new features. 
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3.1.1. Tetragonal. Here 

[ili] a = 4 =  0 , 

0 

(9) 

I I I ,1 S12 --Sll S13 $21 --$22 --$23 

S x 4 = $22 --$21 $23 = 4 X S = ] S 1, S12 S13/. 

LS3 -s3  s3d L s32 s33j 
(79 

The identification of the coefficients leads to the 
relations s~ = s22; st2 = -s2~; s~3 = s23 = s3~ = s32 = 0. 
Thus in the tetragonal system, S has the general form 

Sll --$21 

QI = 1 Sll " (10a) 

0 s 3 

This is also the only form for those tetragonal space 
groups which belong to the classes 4, 4, and 4/m. 

det Ql = s33(s21 + s220. (11) 

For all other tetragonal space groups, s2~ takes 
special values. When the supplementary symmetry 
elements (mirrors parallel or/and binary axes perpen- 
dicular to the fourfold axis) have the same orientation in 
G and g, their rotational parts commute with S, 
implying 

$21 = 0 
and 

j ll 0 0 

Q2 = Q1($21= O) = / o  Sll 0 . (10b) 

0 S33 

When the last two (binary) symmetry elements of the 
HM (Hermann-Mauguin) symbol are identical, other 
orientations are allowed. For instance, in P422 the 
identical orientation leads to Q2, but the following 
orientation is also possible with the 2x axis in g rotated 
by 45 ° with respect to the 2 x axis in G so that (cf. Fig. 

f l =  1 0 =2xx, a =  --1 = 2 x . ( 1 2 )  

O - -  O - -  

From Q l f l = a Q 1 ,  (7") 

follows simply 

and 
$21 : --SII 

S11 

Sll 

0 s 3 

(10c) 

The possibility of S having the two non-equivalent 
forms Q2 and Q3 only exists for the groups P422, 
P4mm, P4/mmm, P4122, P4322 , P4222 , P4cc, 
P4/mcc, I422, I4mm, I4/mmm. There are two remark- 
able exceptions: P4/nmm only allows Q2 because the n 
glide is compatible only with the parallel orientation of 
the m planes in G and g. The case of 14122 which 
allows only Q2 will be discussed later. 

When the last two elements of the HM symbols are 
not identical, the parallel orientation alone is allowed 
and only the diagonal form Q2 is possible. However, Q3 
is able to relate non-equivalent space groups which are 
'class equivalent' (see Appendix B). 

3.1.2. Hexagonal and trigonal. Here, 

[!1i 1 a =  6 = 0 . (13) 

0 

Its commutation with S leads to the following general 
form of S in the hexagonal system; 

[ Sl' s22-s" ~ ]  (14a) 

H1 = [ sll ; $22 $220 S33 ' 

with 

det H1 = s33(s2~ + s22--s~sz2). (15) 

This remains the only form of S for the classes 6, 
and 6/m but also for the trigonal groups and rhombo- 
hedral groups (hexagonal axes) belonging to the classes 
3 and 3, because from the commutation of S with a = 6 
also follows the commutation with (00 2 = 3. 

When in the hexagonal space group symbol, the last 
two (binary) symmetry elements are different, their 
orientation in G and in g must be the same and their 
commutation with S implies 

$22 = Sll 

and 

L0 ' 1 
sli 0 0 

H E = H I ( S E E = S l I ) = [ 0  Sll 0 . (14b) 

0 s33 

When the last two elements of the HM symbol are 
identical, other orientations are allowed. In 622 for 
instance, the 2 x axis in G (say a) may coincide with the 
twofold axis of the second kind in g. Thus 

[ °il l: i] f l=  i , a =  i . (16) 

0 0 
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From (7), 

H i fl = a H  l, (7")  

it follows by identification of the coefficients that 

$ 2 2 -  Sll = Sll , 

so that finally one obtains a matrix H3,  

Sl 1 Sl I ~ ] 

H3 = HI (s22 --- 2Sil) = [ - -~1 2Sll . ( 1 4 c )  

0 S33 

The possibility of S having the two (non-equivalent) 
forms H 2 and H 3 only exists for the groups P622, 
P6mm, P6/mmm, P6122, P6522, P6222 , P6422 , 
P632Z,OP6cc, P6/rncc. When the last two elements of 
the HM symbol are different, H 3 is still able to relate 
non-equivalent groups which are 'class equivalent' (see 
Appendix B). 

Remark 

When referred to hexagonal axes, the rhombohedral  
groups belong to H~ for R3 and R3 and to H 2 for R32, 
R3m, R3m, R3c and R3c. When referred to rhombo- 
hedral axes, the corresponding rr~trices are R~ and R 2, 
respectively. 

Rl= s 3 s I s 2 , (17a) 

S 2 S 3 SiJ 

Ii I $2 S21 
R 2 : Rt(s  2-- s3) = s 2 sl s2 • 

2 $2 S] 

(17b) 

Their determinants are 

det R 1 = (s I + s 2 + s3) 

× (S21 +S22 + s2--SlS2--s2s3--s3sl),(18a) 
det R E = (s I + 2s2) (s I -- s2) 2. (18b) 

The general matrices Ql and H l of the tetragonal and 
hexagonal systems are special cases of M. (The matrix 
M for the case 'b axis unique' has non-diagonal terms 
sl3 and s31. ) 

Ql = M(sll  = S22; S,2 = --S21), (21) 

Hi = M(s12 = --s21 = s22 -- Sll). (22) 

3.2. Cubicand orthorhomb& groups 

3.2.1. Cubic. The commutation rule leads to the 
'spherical'  matrix 

C =  s • 

0 

(23) 

It can be considered as special case of  M (19) with 
Sll = S22 = S33 = S and s~2 = s2~ = 0, or of  R 1 with s~ = s 
and s 2 = s 3 = 0. 

For all cubic space groups the lowest index of a 
maximal equivalent subgroup is [27] (a = 3A, b = 3B, 
e = 3C) with the choice of origin as specified in Inter- 
national Tables for  X-ray Crystallography (195 2). For  
example, P4332 is an equivalent subgroup of index [27] 
of P4~32. The isosymbolic maximal subgroup, say 
P4~32 has the index [125] (a = 5A, b = 5B, e = 5C) 
(cf. under § 4.1). 

For all symmorphic cubic groups (P23, F23 ,  I23,  
etc.) there exists an equivalent subgroup of index [8] 
(a = 2A, b = 2B, e = 2C) which however is not maxi- 
mal. Indeed, consider a P lattice and double all lattice 
dimensions; the new unit cell contains eight points and 
the new lattice can be decomposed into either two F 
lattices or four I lattices. 

Decentring gives rise to P lattices having an eight 
times larger unit cell. Chains of  subgroups can be 
constructed as indicated below. 

[21 141 121 
P - - - - ~  F ~ - - ,  P , F . . .  

3.1.3. Monoclinic. If  we consider a monoclinic 
crystal with the preferred direction along Oz (first 
setting of International Tables for  X-ra: Crystallo- 
graphy, 1952), the commutation of S with the matrix 2~ 
or m z (mz = mirror perpendicular to Oz) reduces S to 
the form 

with 
k :1 

Sll St2 

M = 1 s22 , (19) 

0 s 3 

det M = s33(s11 $22 -- s21 s12 ). (20) 

or 

[4) 121 [4] 
P - - - ~ I ~ - - * P  ~ I  . . .  

These chains also explain why F and I lattices have 
non-maximal equivalent subgroups of index [8]. 

3.2.2. Orthorhombic. When the three symmetry ele- 
ments in the HM symbol are equivalent, there are six 
possible matrices, S, which correspond to the identical 
orientation (O0 ,  to the circular permutation of the axes 
(O 2 and 03) and to the interchange of two axes 
(04 ,  05 ,06)"  
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Sll 0 SI2 0 

01 ~ 0 S22 ; 0 2 = 0 ; 

0 0 s 3 s31 0 

[i t !°i 0 3  0 o/; 04= 0 
S32 S32 

05  ~-~ S22 0 / ; 06  = 1 0 0 . 

31 0 0 s 3 

This is the case for P222, Pmmm, Pnnn, F222, 
I222, Fmmm, Immm and Fddd, and also for C222 and 
Cmmm, admitting here the equivalent of A and B 
centring. 

One has the following rule: if one replaces the non- 
zero coefficients of the matrix Oj by 1 and if the 
corresponding transformation of the axes conserves the 
HM symbol, then Oj is allowed. For instance 
the circular permutation x --, y ~ z --, x leaves Pbca 
invariant. Indeed, b x --, cy, cy --, a z, a s --, b x. The same is 
true for the circular inverse permutation so that the 
matrices 02, O a and O 1 are allowed. A simple inter- 
change of axes x = y changes Pbca to Pcab (b x -, ay, 
cy --, c x, a z --, bz) so that 0 6 is not allowed. Thus we do 
not consider here different settings when they corres- 
pond to different H M  symbols.* For lbca, which has 
the full symbol -cabTbca, all the matrices O1 to 0 6 are 
allowed; they leave the full symbol invariant. 

When an axis or plane plays a privileged role, it 
generally corresponds to the Oz direction in the 
standard symbol of International Tables for  X-ray 
Crystallography (1952). Two cases may occur: 

(a) The symmetry operations corresponding to the 
x and y axes are equivalent and may be interchanged. 
Then the matrices O 1 and 0 6 are allowed. This is the 
case for P2221, C2221, P21212, Pmm2 and its A, C, 1 
and F centring, Pba2, lba2, Pcc2, Ccc2, Pnn2, Fdd2, 
Pbam, 1barn, Pccm, Cccm, Pmmn, Pnnm, Pccn, 
Cmma, Imma, Ccca. 

(b) The symmetry operations corresponding to the 
x and y axes are not equivalent. Only the matrix O 1 
remains allowed. This is evident for Pma2 for instance. 
For Pmma and Pnna the non-equivalence of the x and 
y directions can be recognized from the full symbols 
which are respectively P21/m 2/m 2/a and P2/n 21/n 
2/a. In the interchange of x and y, the symbols would 
become Pmmb and Pnnb respectively. Consequently 
0 6 is not allowed. 

The triclinic groups P1 and P i  are briefly considered 
i n § 5 .  

4. Parity rules 

We now turn our attention to the relations (8e) and 
(8b), which in the presence of fractional lattice trans- 
lations imposes 'parity'* conditions upon the 
coefficients of S. This will be the case for screw axes, 
glide planes (8e) and centred lattices (8b). 

4.1. Screw axes 

Suppose that the principal axis is a screw axis n m and 
that the origin in G is on that axis. Relation (8e) can be 
written 

s33m/n - m/n = n33 (integer), 

or s33 = nn33/m + 1. (25) 

Thus, nn33/m must be an integer (Buerger, 1947). 
We consider as an example P41. Here relation (25) 
becomes 

s33=4n33+ 1 

and the index of g is 

det Q1 = (4n33 + 1)(s21 + s21) • (26) 

Remark 

Suppose that we increase the cell dimension only 
along e, keeping s21 + s21 = 1 ; then, for n33 = 1, 2, 3, we 
have isosymbolic subgroups P41 of index 5, 9, 13 
respectively. For the negative values n33 = -- 1, - 2 ,  --3, 
one has de tQl  = - 3 ,  - 7 ,  - 1 1  respectively. The 
negative sign corresponds to a change of handedness, 
i.e. there are enantiomorphic subgroups P43 of index 
3, 7 and 11 respectively of P41. At the same time we 
can answer the question of maximal equivalent sub- 
groups. The subgroups of index 3, 5, 7, 11 and 13 are 
certainly maximal as these are prime numbers. The iso- 
symbolic subgroup P4~ of index nine is not maximal for 
we have the chain relation 

P41 --, [3] P43 --, [3] P4 r 

If we had started with P43 we would have obtained 
the same result because 43 is identical to 41 provided the 
rotation is clockwise. We can also say, considering only 
moduli, i.e. positive numbers, that 

S33 = 4n33 + i 

corresponds to subgroup relations 

41 4 4 1 ;  43 --,43 (index 5, 9, 13 . . . ) ,  

whilst s33 = 4n33 + 3 

corresponds to 

(25a) 

41 - '  43 ; 43 --, 41 (index 3, 7, 11 . . . ) .  (25b) 

* This does not imply any loss of generality (see Appendix C). * Exactly 'congruence modulo Z". 
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Similar considerations are valid for other enantio- 
morphic pairs such as 31, 32; 61, 65; 62, 64. 

There is no restriction on sll and s21 so that the 
factor s]~ + s2t takes the values 1, 2, 4, 5, 8, 9, 10, 13. If 
n33 = 0 for instance, those subgroups of index 2, 5, 13 
are certainly maximal. It turns out that those of index 9 
are also maximal; those of index 4, 8 and 10 are not 
(see Sayari, 1976 and Appendix D). 

4.2. Glide planes 

4.2.1. Glide plane perpendicular to a principal axis. 
Consider a glide plane operation n, n = (m z 1½½0). 

11 The relation (8e) for r = :~0 becomes in a 
tetragonal lattice (matrix QI) 

(sll + s20/2 -- ½ = p, 

or sll "~- S21 = 2p  + 1. (27) 

Thus s~ and s21 must be of opposite parities. In P4/n 
for instance, s2~ + s2a can only take odd values 1, 5, 9, 
13, etc. These opposite parities exclude for P4/nmm the 
possibility of the matrix Q3 (where s21 -- s11). 

4.2.2. Glide plane parallel to a principal axis. Con- 
sider the c operation as in R3c for instance which sends 
point x, y, z to y + ½, x + ½, z + ½ (in rhombohedral 
coordinates). Here r~ is ~:~ ~ ~ and relation (8e) leads to 

(s I + 2s 2 - 1)/2 = n, 

or s~ = 2n + 1. (29) 

It is easily seen from det R 2 that its minimum value 
occurs for s~ = --1 and s 2 = +1 so that the maximal 
equivalent subgroup of R3c has its lowest index equal 
to 4 and lattice vectors 

a = - A  + B + C,  

b = - - B  + C + A, (30) 

e = - - C + A + B .  

4.3. Centred lattices 

As an application of (8b) we consider an I lattice in a 
tetragonal space group which for S = Q~ introduces the 
following relations: 

Is,,- S l>/2] 
s , ,  + s~,)/21- = 

/ 

s33/2 J 
11] 1 n 2 o r  n 2 + . 

n3 3 + 

(28) 

Either s~  and s21 are of the same parity and s33 is 
even or s~ and s2~ are of opposite parity and s33 is odd. 
In 14 one has both possibilities whilst in 141 only the 
latter can exist. Indeed, 4~ and 4 3 a x e s  are present here, 
so that s33 can take the values of (25a) and (25b), i.e. 
s33 = 2n + 1. The opposite parities of s~ and s2~ in 141 
also exclude the possibility of the matrix Q3 for I4122 
(wh i l s t  Q3 is allowed for P4~22). 

Furthermore, if we associate with 141 a symmetry 
element such as m x to form 141 md (so that only Q2 is 
allowed where s21 = 0, say even), then sll can only be 
odd. 

4.4. Influence of  the choice of  origin 

To illustrate the influence of the choice of the origin 
on the parity of sij we shall discuss more thoroughly 
two examples I41/a and P21212 ~. 

4.4.1. Discussion of  14Ja. There are two versions 
given in International Tables for X-ray Crystallog- 
raphy (1952) concerning the choice of the origin. We 
shall add a third one. 

(1) The origin is on the 4 axis. We shall consider as 
generators the lattice translations of I (000; ~7~j,111~ and 
the operations of (41000) and ( i  10½1) located at 0,0,z 
and 1 1 0,:r,~, respectively. There are two solutions for the 
coordinate triplets X o, Yo, Zo of the origin in g, labelled 
(a) and (b) and given in example 3 of Appendix A 
according to the two possible choices for t 6 (integral 
and fractional translations). The matrix S has the form 
Q I and the equation (8a) applied to the inversion 
operator i = (110,~) reads 

S l l -  1)/21 + 2 Yo 
/ 

s33-- 1)/4] 

= t ~ .  (31) 

Here again we have two choices for t c which we shall 
call a and fl for integral and fractional translations 
respectively. For the four possibilities: aa, aft, ba and 
b/ /one  finds the following parities of the coefficients st: 
(Table 1). 

We recall that (a) corresponds to the choice 000 
(and equivalents) whilst (b) corresponds to 0,½, I (and 
equivalents) for the origins in g. Sets (a) and (b) are the 
locations of the centres of equivalent 4 axes. 

(2) The origin is at the inversion centre. The 
following generators will be chosen: i = (i  1000); 41 = 

Table 1. Parity conditions 

Origin o on ~,, group 14~/a. 

aa  aft ba  

s n 2p + 1 2p 2p + 1 
s21 2q 2q + 1 2q 
s33 4r + 1 4 r -  I 4r + 1 

o is at 000; 00~; ~0; ~ for the columns under a a a n d  aft 
at ~ ;  ~3]; 0~; 0~  for the columns under ba and Off. 

Origin o on 41 

o is as above for the columns under aa  and ba  
o is at ~00; ~O~; 0~0; O~ for the column under aft 
o is at 00~; 00~; ~-~; ~ for the last column. 

b~ 

2p 
2 q +  1 
4 r +  1 
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(4~144~) and the translations 000; ~ of L The 
coordinates X o, Yo, Zo can take the values 0 and/or ½ 
(solution a) and +¼ (solution b) according to example 1 
of Appendix A. 

Relation (8a) written for the symmetry element 4 l 
becomes 

[ [xo:: 1 (3Szt + S11--1)/41 + - - X  o+ 
I 

(S33-- 1)/4 ] 0 

= t  o . (32) 

The possible values of X o + I7o = X"  and - X  o + Yo = 
Y~ are 00, 11 ~ .  r~, ~ and Table 2 reproduces the result 
of the discussion. 

It is remarkable that with the choice (a) of possible 
origins (in 000 for instance), sll is always odd whilst for 
choice (b) (in ~axx11 for instance), sll is always even. Note 
again that the sets (a) and (b) are inversion centres. 

(3) Origin at 41. We consider the generators 41 = 
(4z100-}); i = (|1~4~). The respective symmetry 
elements are located at 00z and 1 l ~0~. Equation (8a) 
becomes explicitly 

S21/2 ] + 2 Yo = tlo (33) 
/ 

S33-- 1)/4_] o 

when written for i, and 

+ ] - X o +  =t2o (34) 

(S33- -  1 ) /  [ + 0  

when written for 41 . 
If we split (8a) into the two equations (8d), we find 

as possible origins those given in the example 1 of 
Appendix A under (a) (point 000 and equivalents) and 
under (b) (point k-~ and equivalents) with the solutions 

sll = 2p  + 1; s21 = 2q; s33 = 4r + 1 for (a),(35) 

sll = 2p; s21 = 2q + 1; $33 = 4 r -  1 for (b).(36) 

It is then easily seen that the choice (b) of origins in g 
is not compatible with (34). The question arises if the 
set (a) of origins is complete. The answer is no. We still 

have to investigate the possibility of Z o taking the value 
¼. It then turns out that ~)k and 0~¼ are compatible 
with the parity conditions 

s l l = 2 p +  1; s21=2q;  s 3 3 = 4 r - - 1 ,  (37) 

(for tlo integral and t2o fractional) whilst the origins 00~} 
and ~ are compatible with the parity conditions 

s 1 1 = 2 p ;  s 2 1 = 2 q +  1; s 3 3 = 4 r +  1 (38) 

(for tlo fractional and t2o integral). Note again that the 
only origins possible in g are on 41 axes here, but that 
the parity conditions (35) to (38) are still the same as in 
Table 1. 

To summarize the discussion, once the origin is 
chosen in G on a symmetry element, the origin in g is 
on a symmetry element of the same nature [see 
discussion following (8c)]. Parity conditions on the 
coefficients of S depend on the origin. 

4.4.2 Discussion o f  P21212 I. As a second example 
we discuss P212121, the S matrix being 0 6 . The 
generators 21x = (2 x I,~0) and 2 ly = (2y10~) as well as 
their product 21z = (2z 1 1 I~0:) have the same form in G 
and in g. However the x and y axes are interchanged. 
For instance (8a) reads 

0 6 r(21x)-- r(21y) + [(1)--  2tIT = t o (39) 

and gives rise to the three equations 

s12/2 + 0 + 2 X  o =  n 1, 

s 2 1 / 2 -  ½ + 0 = n 2, (40) 

0 -- ½ + 2 Z  o = n 3. 

Similar equations written for 21y and 21~ give rise to 
the result that the coefficients of 06 must be odd, the 
origin being at ~ in g. 

Thus one has finally 16 possible origins in P212121 
for o which are: 000; ~ (for the matrices Ol, O2, 03); 
111. 333 (for the matrices O4, 05, 06) and those 4-~, 
obtained by adding the translations 000, 11 ~}0, ~)~ and 
0~ .  Note that these remarkable points are not given 
explicitly in Internat ional  Tables f o r  X-ray  Crystallog- 
raphy (1952) and that they are not located at symmetry 
elements. 

Table 2. Pari ty  conditions 

Origin at the inversion centre, group I41/a 

S33 ~--- 

$33 

Xo, ro 
x ' , r "  

4r+ 1 

SII 
$21 

4r-- 1 

SII 
$21 

00; kk 0½; ½0 ,~. ~3 ;iX, ~ 
oo ~ ½0 

4p+ 1 4 p - i  4p+ 1 4 p - 1  4p 4p+2 
4q 4q+2 4q+2 4q 4 q - i  4q+ 1 

4p+ 1 4 p - i  4p+ 1 4 p - 1  4p 4p+2 
4q+2 4q 4q 4q+2 4q+ 1 4 q - i  

4p 
4q+ 1 

4p 
4q -  1 

13. az, ll 
0~ 

4p+ 2 
4q -  1 

4p+ 2 
4q -  1 
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5. Equivalent subgroups of  PI  and Pi 

P1 occupies a special place as it has solely equivalent 
subgroups. Its discussion will be given in a separate 
paper (Bilfiet & Le Coz, 1979) and only the main 
results for subgroups g of prime index p will be repro- 
duced here with 

a = pA; b = B + q~ A; c = C + q2 A (41) 

and similar formulae obtained by circular permutation 
(as b = pB and so on). ql and q2 obey the important 
constraint 

--½p < qj < {p. (42 )  

For instance, 2A, B, C is a cell obtained by doubling 
one cell dimension (p = 2; ql = q2 = 0). 

2A, B +  A,C,  s a y t h e c e l l p = 2 ; q ~ =  1 ; q 2 = 0 i s  
related to C centring. Indeed, subtracting B + A from 
2A one does not change the cell volume and obtains 
A--  B, A + B, C. 

2A, B + A, C + A, say the cell p -- 2, q~ = q2 = 1 is 
related to face centring. Indeed, subtracting from 2A 
the vectors B + A and C + A gives rise to the cell --B 
-- C, B + A, C + A or, changing the order of axes and 
conserving the handedness to B + C, C ÷ A, A + B 
which is the classical P lattice corresponding to face 
centring. The corresponding S matrix (1) is 

l! S = 0 . (43) 

1 

The treatment of P i  is analogous to that of P1. For 
monoclinic space groups (unique axis ¢) and two- 
dimensional groups p l  and p l  one still has (41) and 
(42), dropping the parts related to c. 

6. Subgroups and supergroups 

If g is a subgroup of G, conversely G is a supergroup 
for the group g. Thus equivalent supergroups are 
obtained by the inversion of (1) and (C'), say 

(A,B,C) = (a,b,c)S-', (1') 

a = S b S - k  

As an example of the application of (1'), we consider 
the relation just discussed in P1, 

a, b, c = B + C,C + A , A +  B, (44) 

between the unit-cell vectors a, b, c of the (face centred) 
P lattice of g and A, B, C of the group G. We can ask 
the inverse question: if a, b, c are the lattice vectors of 
the group g, what are the lattice vectors A, B, C of the 
supergroup G ? One reads at once from (44) that 

½ ( a + b + ¢ ) = A + B +  C, (45) 

so that the lattice of the supergroup G is / centred. 

By elementary calculations one has [subtracting (44) 
from (45)] 

A = ½ ( - a + b + c ) ;  B = ½ ( a - - b + c ) ;  

C = ½(a + b -  c), (46) 

and one checks at once that the matrix S' (47) is the 
inverse of the matrix S (47) and that det S' = ½, 

S ' =  ~ --½ ~ = S-k (47) 

½ -  

To show once more the reversibility of the group- 
subgroup relations, we consider the transformation (48) 
which corresponds to sit = s22 = s33 = 1 in the matrix 
H a (14C); 

a = A - - B ,  b = A + 2 B ,  c = C .  (48) 

The resolution with respect to A, B, C is given by 
(49) where now the vectors A, B, C define the cell 
dimensions of the lattice of the supergroup G, a, b, e 
being those of the group g', 

A = ~ ( 2 a + b ) ,  B = ~ ( - - a + b ) ,  C = e .  (49) 

The matrix formed by the coefficients of (49) is of 
course the inverse of that of (48), the general solution 
being 

(H3)- l= 1/ II 1/3Sll 

0 1/3S 3 

(50) 

Thus, considering subgroups and supergroups, the 
similarity operators S which relate equivalent groups G 
and g form themselves an infinite group, the existence 
of the element identity S 0 = (1 L000), of the inverse and 
of a multiplication rule being easily proven. 

For this last point, consider the group G, a subgroup 
g of G and a subgroup h of g. Let a = (air,,), b = 
(flirt), c = (ylry) be homologous symmetry operators 
in G, g and h respectively. One has the conjugation 
relations 

a S l =  Slb and b S 2 =  S 2 c ,  (51) 

from which ~llowstheexistenceofa multiplicationlaw 

a S l S  2 = S i S 2 c .  
(52) 

7. Tabulation of maximal equivalent subgroups of  
lowest index 

Tables 3 to 6 indicate the space groups, preceded by 
their number as in International Tables for  X-ray 
Crystallography (1952), the lowest index of the 
equivalent subgroup for different axes and the cor- 
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T a b l e  3. Monoclinie 

741  

A B C 

Unique axis C 
3P2; 6Pm; lOP2/m. [212A; [212A, B -- A. [212B; [2]A -- B, 2B. [2] 
4P2fi 11P2Jrn.  [212A; [212A, B -- A. [212B; [21A - B, 2B. [3] 
7Pb; 13P2/b. [212A. - [313B; [3]A + B, 3B [21 

14P2Jb. 1212A. - [313B; [3]A + B, 3B. [31 
5B2; 8Bm; 12B2/m. 1313A; [313A, B + A. [212B; - [31 
9Bb; 15B2/b. 1313A; [313A, B + A. [313B; [31A + 2B, 3B. [3] 

Other cell choices 

7Pn; 13P2/n. - [212A, B - A. - [2]A - B, 2B. [2] 
14P21/n. - [212A, B -- A. - [2]A - B, 2B. [31 
512; 81m; 1212/m. - 1212A, B -- A. - [21A - B, 2B. [31 
91b; 1512/b. 1313A; [313A, B + 2A. [313B; [31A + 2B, 3B. [3] 

Conditions 

s33 odd. 
s~2 even, szz odd. 
s~z even, s22 and $33 odd. 
S11 + $22 even, sz~ even. 
$11 -t- $33 even, s21 even, $22 odd. 

sll + slz and s2j + $22 odd. 
SI1 -t- SI2 , $21 q- $22 and s33 odd. 
s1~ + slz, sz~ + sz2 and $33 of same parity. 
s~l + s~2, sz~ + szz and $33 ofsame parity; 

slz + s2z odd. 

Only directions A and B are considered. The information given is redundant when these directions are equivalent. On the other hand the 
information is incomplete for the other cell choices (except 9 and 15) where the index [3] would be found for the direction A + B. 

T a b l e  4. Orthorhombic 
A B C 

16P222;47Pmmm. [2] or [2] or [2] 
21C222;25Pmm2. [21 or [2] [2] 
17P222 :  27Pcc2; 49Pccm. [21 or [21 [3] s33 odd. 
26Pmc2 t. [2] [21 [3] s33 odd. 
28Pma2; 5 IPmma. [3} [2] [21 sll odd. 
18P21212; 32Pba2; 50Pban; } } 
55Pbam; 59Pmmn; 67Cmma. [3] or [31 [2] s11, s22 odd. 
35Cmm2; 65Cmmm. Sll + s22 even. 
29Pca21; 3 IPmn21; 53Pmna; 54Pcca. [3] [2] [3] s11, s33 odd. 
30Pnc2; 39Abm2; 57Pbcm. [21 [3] [31 sz2, s33 odd. 
38Amm2. s22 --t- $33 even. 
19P212121; 241212121; 48Pnnn; 61Pbca; I ~ ] 
70Fddd; 73Ibea. " [3] or [3] or [3] ! 
22F222; 231222; 69Fmmm; 71Immm. 
34Pmn2; 43Fdd2; 451ba2; 56Pccn; } } 
68Ccca; 58Pnnm; 72Ibam; 74Imma. [31 or [31 [3] 
44Imm2; 42Fmm2. 
20C2221; 37Ccc2; 66Ccem. 
33Pna21; 41Aba2; 461ma2; 52Pnna; } } 
60Pbcn; 62Pnma; 64Crnea. [31 [3] [3] 
36Cmc21; 63Cmcm. 
40Ama2. 

All conditions are given for the matrix O1. 
'or' means 'equivalent'. 

Conditions 

SII , $22 , $33 odd. 

SI 1, $22, $33 s a m e  parity. 

SIi , $22 , $33 odd. 

sl 1, s22, s33 same parity. 
sl i, s22 same parity; $33 odd. 

$11, $22, $33 odd. 

Sll + s22 even; $33 odd. 
sll odd; sz2 + s33 even. 

r e s p o n d i n g  v e c t o r  r e l a t i o n s .  T h e  g r o u p s  u n d e r  c o n -  
s i d e r a t i o n  a r e  m o n o c l i n i c  ( T a b l e  3), o r t h o r h o m b i c  
( T a b l e  4),  t e t r a g o n a l  ( T a b l e  5),  t r i g o n a l ,  r h o m b o h e d r a l  
a n d  h e x a g o n a l  ( T a b l e  6). T h e  l a s t  c o l u m n  o f  t h e  t a b l e s  
i n d i c a t e s  g e n e r a l  p a r i t y  c o n d i t i o n s  o n  t h e  c o e f f i c i e n t s  o f  
t h e  S m a t r i x .  

A s  a n  e x a m p l e ,  t h e  l ine  in  T a b l e  3 r e l a t i v e  t o  t h e  
g r o u p s  B l l b  ( N o .  9) a n d  B l l 2 / b  ( N o .  15) g ive s  t h e  
f o l l o w i n g  i n f o r m a t i o n .  T h e  l o w e s t  i n d e x  o f  e q u i v a l e n t  
g r o u p s  is [3]. T h e  v e c t o r  r e l a t i o n s  a r e :  

a = 3 A ,  b =  B, c =  C; 

a = 3 A ,  b =  A +  B, e =  C ;  

a =  3A,  b = - - A  + B, e =  C; 

a---- A, b = 3 B ,  e =  C; 

a =  A +  2B, b =  3B, e =  C; 

a =  A - 2 B ,  b =  3B, e =  C; 

a : A, b =  B, e =  3C; 

a n d  t h e  c o e f f i c i e n t s  in 

a = s ~ A  + s21 B, b : s l 2 A  + $22B, C = $33 C 
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are such, that s22 is odd (here 1 or 3), s2~ is even (here 0 
or +2 )  and S~l + s33 is even (here 1 + 3 or 3 + 1). 

The authors are indebted to Professor David 
Shoemaker for critical reading and valuable correc- 
tions. 

Note added in proof." Recently, Koch & Fischer 
(1978) have given a definition of  the 'affine isomor- 
phism' which is related to our definition of  the 'conjuga- 
tion relation' (Bertaut & Billiet, 1978). 

Table 5. Tetragonal 

75P4; 81P4; 83P4/m; 
89P422; 99P4mm; 123P4/mmm. 
76 P4 l;* 78 P43;* 91 P4122;* 95 P4322;* / 
77P42; 84P42/m; 103P4cc; 124P4/mcc. J 
85 P4/n. 
7914; 821zt; 8714/m. 
80141; 86P42/n; 8814Ja. _ 
90P42~2; lOOP4bm; 113P42~m; 117Pal, b2; / 

125P4/n; 127P4/m_bm; 129P4/nmm. J 
111Pfl2m;t 115P4m2.]" 
92 P4~212;* 94 P422~2; 96 P43212;* 98 14122; 

102P42nm; 104P4nc; 106P4_2bc; 10814crn; 
109141md; 110_/4~cd; 114P42~c; 118P4n2; 
120Idc2; 122142d; 126P4/nne; 128P4/mne; 
130P4/ncc; 133P42/nbc; 134P42/nnm; 135P42/mbc; 
136P42/mnm; 137P42/nmc; 138P42/ncm; 14014/mcm; 
14114 Jam& 14214~/acd. 
971422; 10714_mm; 13914/mmm. 

11914m2; 121142m. 
lOIP42cm; 105P42mc; 112P42c; 116Pz~c2; / 
131P42/mmc; 132P42/mcm. J 

} 

C 

[21 

131 

[21 
[31 

[21 

t31 

A,B 

[21 

121} 

[51 
151 

[91} 

[91 

Conditions 

s33 odd. 

sll + s2t odd (QI). 
stl + s2t and s33 same parity (Q1). 
Sll + S21 and s33 odd. 

st1 odd. 

} 
sll arbitrary. 

sll and s33 odd (Qz)- 

sll + s33 even (Q2) or s33 even (Q3). 
sll + s33 even (Q2). 

s33 odd.t  

In the column A, B [21 abbreviates the transformation a = A + B, b --- - A  + B; 
[5] abbreviates the transformation a = 2A + B, b = - A  + 2B; 
[9] abbreviates the transformation a = 3A, b = 3B. 

* For the starred symbols the equivalent subgroup of index [3] has the symbol of the enantiomorphic group. The first isosymbolic 
maximal subgroup has the index [51 (e = 5C). 

t The subgroup of index [41 a = 2A, b = 2B, e = 2C is not maximal (cf. Appendix B). 

Table 6. Trigonal, rhombohedral, hexagonal 
C A,B 

143P3; 144P3fi* 145P32;* 147P-3; 168P6; 171P62;* 172P64;* I 
174 P6; 175 P6/m; 177 P622; 180 P6222;* 181 P6422;* 183 P6mm; 191 P6/mmm.I [2] [3] 
149P312; 150P321; 151P3~12;* 152P3121;* 153P3212;* 154P3221;* 156P3ml; ] 
157P31m; 162P31m; 164P3ml; 146R3; 148R3; 155R32; 160R3m; 166R3m; ] [2] [4] 
187P6m2; 189P62m. 
173P63; 176P63/rn; 182P6322; 184P6cc; 192P6/mcc. [3] [3] 
158P3cl; 159P31c; 163P31c; 165P3ci; 185P63cm; 186P63mc; 188P6c2; } 
190P62c; 193P6Jmcm; 194P63/mmc. [3] [4] 
169 P61; 170 P6_5; 178 P6122; 179 P6s22. [5] [3] 
161R3c; 167 R3c. [5] [4] 

In the column A, B, [31 abbreviates the transformation a = A - B, b = A + 2B; 
[41 abbreviates the transformation a = 2A, b = 2B. 

For conditions see text §4.1. and §4.2. 

* For the starred symbols, the equivalent subgroup of index [2] (¢ = 2C) has the symbol of the enantiomorphic group. The isosymbolic 
subgroup of index [41 (e = 4C) is not maximal. The first maximal isosymbolic subgroup has the index [7] (e = 7C). 
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A P P E N D I X  A 

Locations of  equivalent symmetry elements and choice 
o f  origin 

Examples: 

(1) a = i =  --1 . 

0 -  

Equation (8c) reduces to 

2(Xo, Yo ,Zo)= ta. (A1) 

Thus in a P lattice the solutions are 

(a) X o, Yo,Zo = 000; 1{00," 0½0,1.0 0{;1 

11 • 1 1. 0 1 1 .  111 ~r-~0, ~ 0 ~ ,  F~,  ~ "  

In an I lattice, ta can be a fractional translation 
which adds the following solutions; 

(b) Xo, ro,Zo = ~ ;  113. 311.13,. 

331. 133. 313. 333 
44"-4, ~ ,  4-'J-4, ]'-4~" 

The 16 coordinate triplets under (a) and (b) form the 
set of the locations of the symmetry centres in an 1 
lattice. 

(2) a = 4 =  0 . 

0 

Equation (8c) reduces to 

(Xo + Yo, - -Xo + Yo, O)= to. (A2) 

In a P lattice the solutions are 

(a) Xo, Yo = 00; ~ and Z o arbitrary. 

In an I lattice these solutions remain the same as 
under (a) because in (A2), fractional translations are 
not allowed for ta. The situation is, however, different 
for a screw axis, say 41 (cf. § 4.4.1). 

(3) c t = 4 =  0 . 

0 - -  

Equation (8c) reduces to 

( X o -  to,  Xo + Yo, 2 Z o ) = t  ~. 

In a P lattice the solutions are 

(a) Xo ,Yo ,Zo= 000;-,ff~0,11 "00½; ~ff~.111 

In an I lattice one has to add the positions 

(b) Xo,Yo,Z 0 0 " ~ ;  1 3 . 1  1. 1 3 = 0~:~, ~0~, ~0~. 

(A3) 

These eight coordinate triplets represent the centres 
of the 4 axes in an 1 lattice (example I41/a , space 
group No. 88, origin at 4). 

[:°!1 (4) a =  2x=  --1 . 

0 -  

The solution is 

(0 ,2Yo ,2Zo)=to ,  (A4) 

say, 

Yo,Zo = 00; ½0; 0½; ~ and X o arbitrary 

for a P lattice as well as an 1 lattice (fractional t c are 
not allowed)._ 

T_hus, in I4 there are eight possible T vectors, whilst 
in I42m (generators 4 of example 3 and 2 x of exam_pie 
4) only four are possible. In I 4 / m m m  (generators 1 of 
example 1, 4 of example 2, 2 x of example 4), the inter- 
section of the solutions corresponding to the generators 

0 1 comprises the same four vectors: 000; ~43; ~ ;  111 2--2"~" 

(5) a = 3 = 0 

1 

(rhombohedral or cubic axes). 
The solution is 

(Xo- Zo, ro -  Xo, Zo- to)= tG. (AS) 
Note that the sum of the coordinates on the left hand 

side is zero, so that t G = fractional translation is not 
allowed in an I lattice (but is possible in an F lattice). 

A P P E N D I X  B 

'Class-equivalent' space groups 

If G is P4m2, g = P42m is a maximal subgroup of 
index 2. Although the space groups are different, their 
crystal classes are the same. That is why we call these 
space groups 'class equivalent'. 

Provided we choose in Fig. 1 a x = rex, fll = mxx (or 
a2 = 2xx, f12 = 2y) as homologous symmetry 
operators, relations (C) and more particularly (7) still 
hold with the result that S = Q3- For Sll = s33 = 1, one 
finds 

a, b, e =  A - -  B, A + B, C. (B1) 

The non-equivalence of G and g is also evident from 
the fact that det Q3 cannot take the value unity. 

One may construct the infinite chain of subgroups: 

P~trn2 t21 t21 , P42m , P3,m2 , . . . .  
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Thus the equivalent subgroup P4m2 of index 4 of G = 
PfCm2 is not maximal. Its unit-cell vectors a', b', e' are 
obtained by iteration of (B1). a', b', e' = a - b, a + b, 
e = --2B, 2A, C and correspond to doubling A and B. 
Note that this result can also be obtained from Qz with 
s f ( =  2. 

More generally one has chains 

[i] [i] 
P4m2 , P42m - , Pi~m2 , . . . ,  

where, assuming s~  = s~ = 1, the index [i] is given by 

[i] = 2(st°02 and s ~ =  2(s~02. (B2) 

Couples of class-equivalent space groups in the 
tetragonal system are: 

(P42_mc No. 105, P42em No. 101); (P42m No. 111, 
P4m2 No. 115); (P42e No. 112, P4e2 No. 116); (I4m2 
No. 119, I42m No. 121); (P42/mme No. 131, P42/mem 
No. 132). 

One similarly has 'class-equivalent space groups' of 
index 3 in trigonal and hexagonal space groups. Thus 
G = P3m 1 and g = P3 lm are related by the matrix H a 
so that for s t~ = s33 = 1 the vector relations between the 
unit cells are 

a, b, e = A -  B, A + 2B, C. (B3) 

One may construct the infinite chain of subgroups 

[31 [31 
P3ml , P31m , P3ml  , . . . .  

Thus the equivalent subgroup P3ml  of index 9 of G = 
P3ml  is not maximal. Its unit-cell vectors a', b', e' 
obtained by iteration of (B3) a', b', e' = a - b, a + 2b, 
e = --3B, 3A + 3B, C correspond to tripling the unit- 
cell vectors in G; this result may also be obtained from 
the matrix H 2 with s~  = 3. 

More generally one has chains 

[ii [i] 
P3ml , P31m--  , P3ml , . . . ,  

n2 = s3H3 = 1 the index [i] is given by where, assuming s33 

n ,=  3 (sn02. (B4) [i] = 3(sin0 z and sll 

Couples of class-equivalent space groups in the 
trigonal system are: 

(P312 No. 149, P321 No. 150);(P3t12 No. 151,P3~21 
No. 152); (P3212 No. 153, P3221 No. 154); (P3ml 
No. 156, P31m No. 157); (P3¢1 No. 158, P31e No. 
159); (P31m No. 162, P3ml No. 164); (P31e No. 163, 
P3el No. 165) 

and in the hexagonal system 

(P63cm No. 185, P63mc No. 186); (P6m2 No. 187. 
P62m No. 189); (P6c2 No. 188, P62c No. 190); 
(P63/mcm No. 193, P63/mmc No. 194). 

Remark 

Note that the matrix is,l-sit :] 
~1 Sll 

0 s33 

is equivalent to Q3. 
Also the following matrices 

sll - s l l  : ]  [ SII--2Sll 03l 

So Sl,o , -,1,o 
are equivalent to It 3. By putting S l~ and s33 equal to one 
the reader may check that he gets familiar axis trans- 
formations which are equivalent to (B1) and (B3) 
respectively. 

A P P E N D I X  C 
On settings 

The six 'setting' matrices Sj ( j  = 1, . .- ,  6) of the ortho- 
rhombic system which, according to (1) transform a, b, 
¢ to the settings a, b, ¢; c, a, b; b, e, a; a, e, b; b, 
a, e; e, b, a, in International Tables for  X-ray 
Crystallography (1952) are: 

S l = 1 ; S 2 = 0 ; 

0 0 

I0°:] [:oi l S 3 = 1 0 ; S 4 = 0 ; 
1 - 1  

S 5 = 0 ; S 6 = 0 1 . 
0 -  - 1  0 

(Cl) 

They belong to a group of 24 matrices of determinant 
+1, corresponding to all right-handed systems which 
may be constructed by permutations and/or changes of 
signs of the vectors a, b, e. This matrix group of 
similarity operators Sj ( j  = 1, -- . ,  24) is isomorphic to 
the point group 432-0. If one includes all settings, 
regardless of handedness, one has just to multiply the 
preceding 24 matrices by the inversion matrix 

i i0il 0 - 1  

0 0 -  

in order to obtain the complete group of all setting 
matrices which of course is isomorphic to the point 
group m3m-O h. 
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If the operators a = (al r,,) of G are expressed in the 
conventional setting and those of g, say b = (fll~?) in a 
non-conventional setting, belonging to a matrix aj,  one 
has for the new operators b' = (fl'lz~), 

b----(Sj l000)- '  b ( S j l 0 0 0 ) =  ( S S j I T ) - ' a ( S S j I T ) .  (C2) 

One may consider more general changes of settings, 
S = (Sj IT j), involving a change of axes and of origin 
and use the general formula 

b' = (SS j ) - i  a(SS j). (C3) 

Example. If S = O 1 (24) and Sj = S 5 (C1), one has 

SSj = 2 0 . 

0 --s 3 

A P P E N D I X  D 
Factorlzation of  matrices 

Considering the 2 × 2 matrix part 

[s,, 
S21 SllJ 

of determinant s21 + s21, a subgroup is not maximal if 
the matrix can be factorized into matrices of the same 
nature (Sayari, 1976). For instance, the factorization 
scheme for the index 10 = 32 + 12 is 

i]=[: :] :] 
the intermediate subgroups having the indices 2 = 12 + 
1 2 a n d 5 = 2  2+ 12. 
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Abstract 

Integrated X-ray intensities were obtained from a single 
crystal of VO1.30 annealed below the ordering trans- 
ition. The space group is I4Jamd,  and the unit-cell 
contents are Vst.6064. The atomic arrangement is 
similar to that proposed by Andersson & Gj6nnes 
[Acta Chem. Scand. (1970), 24, 2250-2252], but there 
are more vanadium vacancies and interstitial ions. The 
latter are surrounded by four vacancies as in the defect 
structure of FexO. The oxygen ions around an inter- 
stitial vanadium ion are displaced away from it; oxygen 
and vanadium ions on the octahedrally coordinated 
sites exhibit strongly correlated displacements. There 
are anisotropic electron density distributions at 
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Aichi, 440, Japan. 

0567-7394/79/050745-12501.00 

vanadium ions near a vacancy. These effects indicate 
that the order--disorder transition is not due to a Jahn- 
Teller effect, but instead is a result of a long-range 
cooperative interaction, presumably due to the semi- 
metallic nature of this oxide. 

I. Introduction 

VO x contains large concentrations of cation and anion 
vacancies and interstitial vanadium ions (Watanabe, 
Andersson, Gj6nnes & Terasaki, 1974; Morinaga & 
Cohen, 1970). An ordered structure has been detected 
in the composition range VO1.2-VO1. 3 (Magn61i et al., 
1958; Westman & Nordmark, 1960; Westman, 1960; 
Andersson & Gj6nnes, 1970; Bell & Lewis, 1971). As 
the oxygen sublattice is almost completely filled in this 
composition range, it has been suggested that the 
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